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In a macromolecular X-ray experiment, many sets of intensity measurements

are collected, with each measurement corresponding to the intensity of a unique

reflection at a different X-ray dose. The computational correction of radiation

damage, which occurs as a function of dose during the experiment, is a concept

suggesting the approximation of each set of measured intensities with a smooth

function. The value of the approximating function at a user-defined point

common to all unique reflections is then used as an interpolated snapshot of the

true intensities at this specific dose. It is shown here that, under realistic

assumptions, interpolation with a linear function has the smallest amount of

error at or near two well defined points in the dose interval. This result is a

special case from a mathematical analysis of polynomial approximations which

proves that the points of minimum error in the approximation of a polynomial of

order n by a polynomial of order n � 1 are independent of the function values.

Conditions are formulated under which better intensities are obtained from

linear interpolation than from the usual averaging of observations.

1. Introduction

The effects of radiation damage on crystals of macromolecules

were described by Blake & Phillips (1962) more than 40 years

ago. Experience at third-generation synchrotron beamlines

has shown that serious radiation damage occurs within 100–

500 s of irradiation of crystals with the unattenuated beam,

even if they are cryocooled (Burmeister, 2000; Weik et al.,

2000; Ravelli & McSweeney, 2000).

Radiation damage results in non-isomorphism between

successive sets of data measured from the same crystal. This is

caused by specific and nonspecific changes (affecting all

atoms) of the structure. Nonspecific changes, producing many

small and random changes of electron density and arrange-

ment of atoms, lead to random effects and an overall reduced

scattering of the crystal, and thus to data with reduced reso-

lution. Another nonspecific effect is an increase in the

mosaicity of the crystal, often due to a variation in cell para-

meters throughout the crystal, which results in systematic

differences between successive data sets from the same crystal.

Unit-cell changes lead to different sampling of the molecular

transform, which influences intensities more strongly at high

resolution.

Specific changes, such as the breakage of disulfide bonds,

decarboxylation of acids (Weik et al., 2000) or rupture of

covalent bonds to heavier atoms, are confined to particularly

susceptible sites of the macromolecule. As the electron density

of the crystal changes as a function of dose, intensity

measurements from the crystal, which correspond to the

Fourier transform of the unit cell sampled at reciprocal lattice

points, are dose-dependent. This fact alone may reduce the

phasing signal expected from data collected successively at the

different wavelengths of a MAD experiment. The reduction of

phasing power is even more serious because those sites that

provide the phasing signal, the heavy atoms, are worst affected

by radiation damage.

Usually, this effect is partly accounted for using a smooth

correction function which depends on the scattering angle and

the dose. It is important to realize that, even after accounting

for average changes of intensities in resolution shells using this

correction function, about half of the reflections increase in

intensity relative to their ideal value, whereas the other half

decrease.

A macromolecular X-ray data set has many observations

belonging to a set of unique reflections. The ratio of obser-

vations to unique reflections is called ‘multiplicity’ (sometimes

less appropriately called ‘redundancy’); this ratio is, in most

practical experimental situations, in the range 2–16. In the

presence of significant radiation damage, increased multi-

plicity of measurements, if these are combined to form a

weighted average, may in effect lead to the deterioration of

the overall data quality instead of its improvement.

Computational correction of radiation damage has been

shown to be effective at the level of the raw unmerged

intensity data, thus exploiting the multiplicity of observations

of the unique reflections during data reduction and scaling

(Diederichs et al., 2003). However, it has remained unclear

how much multiplicity is required to be able to extrapolate the
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intensity of each reflection to zero dose, or to obtain a more

accurate interpolated value of the intensity in the dose interval

that is covered by the data set.

Rather than adding evidence by the analysis of specific data

sets, we have investigated the general properties of the

approximation of noisy functions by low-order polynomials.

Our analysis reveals that, depending on the order of the

approximating polynomial, interpolation may yield more

accurate estimates of the underlying function value than mere

weighted averaging.

2. Favourable points

In this section, we present a general idea of how to construct

suitable locations in the dose interval where the evaluation of

the polynomially approximated intensity values leads to small

errors. First, our idea is illustrated in the hypothetical case

where all values of the measured function are available

without error. The approach is then generalized to the more

realistic scenario when only finitely many noisy data points are

available.

2.1. Basic idea

The starting point of our observation is a rule suggested by

the examples presented in Fig. 1: whenever a linear fit to a

nonlinear function on [0, 1] is reasonable, the approximation

error seems to be minimum close to x ’ 0:2 and x ’ 0:8.
To illustrate the mathematical reason underlying this rule,

let us consider the example where the nonlinear function is a

general parabola QðxÞ ¼ �þ �xþ �x2 with � 6¼ 0. To find the

parameters a, b of the linear fit polynomial PðxÞ ¼ aþ bx, we

minimize the squared summed distance

Dða; bÞ ¼ R1
0

½QðxÞ � PðxÞ�2 dx ð1Þ

with respect to a and b. Equating the partial derivatives

@D

@a
¼ �2

R1
0

QðxÞ � PðxÞ dx;

@D

@b
¼ �2

R1
0

½QðxÞ � PðxÞ�x dx
ð2Þ

to zero, we obtain two linear conditions on the optimum

parameters a; b:

R1
0

aþ bx dx ¼ R1
0

QðxÞ dx; R1
0

axþ bx2 dx ¼ R1
0

xQðxÞ dx; ð3Þ

which finally yield

a ¼ �� ð1=6Þ�; b ¼ �þ �: ð4Þ
Obviously, the approximation error jQðxÞ � PðxÞj vanishes

(and thus is minimum) at those points x where the linear

function P coincides with the original function Q. To compute

these points, we have to solve the quadratic equation

PðxÞ ¼ �� ð1=6Þ� þ ð�þ �Þx ¼ �þ � xþ � x2 ¼ QðxÞ: ð5Þ

Surprisingly, the parameters �, �, � of the original function

vanish from this equation, giving rise to the condition

x 2 � xþ 1=6 ¼ 0 ð6Þ
with solutions

x 2 ð3� 31=2Þ=6; ð3þ 31=2Þ=6� � ’ f0:2113; 0:7887g: ð7Þ
In other words, for all parabolae, the minimum approximation

error of the linear least-squares fit occurs at the same points

x ’ 0:21 and x ’ 0:79, supporting the rule formulated at the

beginning of this section. However, the result for quadratic

polynomials does not carry over to all functions in this

universal form. In fact, the approximation error can be far

from minimum at the points characterized in equation (7)

when the graph is not close to a parabola, as shown in Fig. 2(a).

In order to quantify how well a function f can be approxi-

mated by polynomials of degree 2, we first introduce the

maximum discrepancy between f and a general quadratic

polynomial Q, i.e.

kf �Qk1 :¼ max
x2½0;1�

jf ðxÞ �QðxÞj: ð8Þ

The closest parabola to f is then the polynomial Q* which

minimizes this distance in the set �2 of all possible quadratic

polynomials

d2ðf Þ :¼ kf �Q�k1 ¼ min
Q2�2

kf �Qk1: ð9Þ
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Figure 1
Various graphs (solid lines) with corresponding linear least-squares fits
(dashed lines). The graphs are given by (a) exp(2x), (b) 1þ 2x� 3x2 and
(c) ln(1 + 4x). The minimum approximation error occurs at x ’ 0:2 and
x ’ 0:8.
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With this notation, we can translate the assumption included

in our rule that the linear fit should be reasonable into the

quantitative statement that the minimum distance d2ðf Þ of f
from the quadratic polynomials should be small. Equipped

with this measure, we can now cast the rule into a strict

mathematical theorem, the proof of which can be found in

Appendix A.

Theorem 1. Let f : ½0; 1� ! C be square-integrable and let P

be its linear least-squares fit. The approximation error at

x ¼ ð3� 31=2Þ=6 can then be estimated by

jf ðxÞ � PðxÞj � 3d2ðf Þ: ð10Þ

In other words, the linear fit at the favourable points x is

almost as accurate as the best quadratic approximation of f.

2.2. Main result

In order to increase the applicability of Theorem 1, we

modify it in two respects. First, we relax the assumption of the

linearity of the fitted polynomial, allowing for polynomials of

arbitrary degree and thus increasing the range of functions it is

possible to fit (see, for example, Fig. 2b). The second and more

important modification concerns the restriction of available

information on the function f. We assume that only finitely

many measurements YðxiÞ, i ¼ 1; . . . ;N are given, where xi
are pairwise different and YðxiÞ are of the form

YðxiÞ ¼ f ðxiÞ þ "i ð11Þ;

with independent and identically distributed measurement

errors "i having mean 0 and variance �2.
It turns out that these modifications influence the number

and location of the favourable points x. In order to give a

precise definition in this more general situation, we introduce

the set L
2ðXÞ of square summable functions on

X ¼ fx1; . . . ; xNg with the scalar product

hf ; gi :¼ ð1=NÞPN
i¼1

f ðxiÞgðxiÞ; f ; g 2 L
2ðXÞ: ð12Þ

A particular basis of the space L
2ðXÞ is obtained by ortho-

normalizing the monomials 1; x; . . . ; xN�1 with respect to the

scalar product. This leads to orthonormal polynomials

p0; p1; . . . ; pN�1, where pk has degree k.

Using this orthonormal basis, the least-squares approx-

imation of Y with a polynomial PðqÞ of degree q is nothing but

the projection of Y onto the space �q spanned by p0; . . . ; pq:

PðqÞ ¼ hY; p0ip0 þ hY; p1ip1 þ � � � þ hY; pqipq: ð13Þ
In order to choose favourable points for the evaluation of PðqÞ,
we compare it with the higher-degree approximation Pðqþ1Þ. In
view of equation (13), the difference is

Pðqþ1ÞðxÞ � PðqÞðxÞ ¼ hY; pqþ1ipqþ1ðxÞ; ð14Þ
which obviously vanishes at the roots of pqþ1, independent of

the specific measurement Y. Hence, at these favourable points,

the least-squares fit of degree q has the same values as the

least-squares approximation of degree q + 1. Since the

maximum degree that can reasonably be used in the fitting

procedure is restricted because of the limited supply of data

and the corresponding danger of overfitting, this observation

can be used to increase the degree of the approximation

without actually increasing the degree of the fitting procedure.

The following theorem summarizes our considerations and

shows that the favourable points defined in the more general

scenario generalize those described in Theorem 1. The

detailed proof can be found in Appendix A. Again, it uses the

notation of minimum distance drðf Þ between f and poly-

nomials of degree r, i.e.

drðf Þ ¼ min
Q2�r

kf �Qk1: ð15Þ

Theorem 2. Let q 2 N0, X ¼ fx1; . . . ; xNg with N> qþ 1,

f 2 L
2ðXÞ and Y 2 L

2ðXÞ defined by equation (11) with least-

squares approximation PðqÞ of degree q. Further, let x be a root
of pqþ1. Then, the expected squared approximation error at x

is estimated by

E jf ðxÞ � PðqÞðxÞj2� � � Cq �
2=N þ ð2qþ 4Þdqþ1ðf Þ2

� �
; ð16Þ

where Cq ¼
Pq

k¼0 pkðxÞ2.
In other words, the degree-q fit of Y at a favourable point x

is, up to the noise and a multiplicative constant, as accurate as

the best approximation of f with polynomials of degree q + 1.

Our first remark concerns the noise-related part �2=N of

the total error. In general, it is advisable to increase the

number of measurements N to reduce this part of the error

estimate. However, in macromolecular X-ray experiments, the

situation is somewhat different, because the number of

obtainable intensity measurements per unique reflection is

limited owing to the deterioration of the crystal in the course

of the experiment.
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Figure 2
(a) The approximation error at x ’ 0:21 and x ’ 0:79 may be large when
the graph is far from a parabola. The solid line shows the function
sinð3�x=2Þ and the dashed line is the linear least-squares fit. (b) A fit with
a fifth-order polynomial (dashed) gives rise to six favourable points
(indicated by dotted lines), which are again close to the points of
minimum approximation error.
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In order to increase the number of measurements by some

factor, the intensity I of the beam, and therefore the strength

of f, has to be reduced by the same factor to ensure that the

total dose applied to the crystal does not change. In other

words, NI and f=I are intensity-independent. In contrast with

this, the main part of the noise level �2 reduces only in

proportion with the intensity, as a consequence of the Poisson

statistics underlying the photon count. Assuming an additional

basic noise level �20 and a contribution that is proportional to

the square of the intensity, we have �2 ¼ �20 þ c1I þ c2I
2 with

proportionality constants c1 and c2.

To see how the choice of the total intensity influences the

measurement error, we apply Theorem 2 to the scaled data:

Y�ðxiÞ ¼
f ðxiÞ
I

þ �
I
"i: ð17Þ

Since f� ¼ f=I is independent of the total intensity I, an

intensity dependence can only be found in the error compo-

nent related to the random fluctuations with variance �2=I2:

�2

I2N
¼ �20

NI

1

I
þ c1
NI

þ c2
NI

I: ð18Þ

SinceNI is constant, we see that the fluctuation effect inherent

in the photon counting is not influenced at all by a change in

intensity. As a consequence, the decision for low intensity/high

multiplicity versus high intensity/low multiplicity should be

based on an estimate of the additional error contributions. If

the intensity-independent level dominates that proportional to

I, a high intensity should be used, and, conversely, a low

intensity should be employed if the error contribution

proportional to the intensity dominates.

In a macromolecular data collection, the term �20 is given

mainly by background and detector dark noise, and c2 is

strongly influenced by the nonlinearity and counting proper-

ties of the detector. However, other factors originating from

the characteristics of the X-ray beam and experimental setup

(shutters, slits, spindle) also come into play. If all these factors

are known, which would be highly desirable, a program like

BEST (Popov & Bourenkov, 2003) may be used to find the

optimum strategy for data collection.

The second remark concerns the decision for the order of

the fitting polynomial which is the focus of this article. In

particular, we wish to investigate under which conditions the

linear fit (q = 1) outperforms the constant fit (q = 0).

Comparing the error bounds from Theorem 2 for the scaled

data f� ¼ f=I, this may be the case when

C1

�2

I2N
þ 6d2ðf�Þ2

� �
� C0

�2

I2N
þ 4d1ðf�Þ2

� �
; ð19Þ

or, after solving for d2ðf�Þ, when the condition

d2ðf�Þ2 �
2C0

3C1

d1ðf�Þ2 � 1� C0

C1

	 

�2

I2N
ð20Þ

is satisfied. From this condition, one can read off that the

linear fit is likely to win over the constant one, provided the

multiplicity N and the signal-to-noise ratio I=� are high and

the measured profile f� is sufficiently better approximated by

quadratic polynomials than by linear ones.

For a given distribution of nodes xi, the constants C0 and C1

can be computed as shown below. However, the condition of

equation (20) is not really a comparison of errors but a

comparison of worst-case error bounds. A more realistic

answer to the question of whether a linear fit is better than a

constant one is given in x3, where the expected approximation

error is evaluated for synthetic data which mimic the intensity

measurements in a macromolecular X-ray experiment.

2.3. Favourable point locations

For a given distribution of nodes xi, the computation of the

favourable points x used in Theorem 2 is straightforward.

First, let us consider the construction in the case q = 0 of fitting

with a constant. In this case, we require the first polynomials p0
and p1, which are obtained by orthonormalization of the

monomials rkðxÞ ¼ xk. As a result of the definition of the scalar

product [equation (12)], the constant monomial r0 is already

normalized, so that p0ðxÞ ¼ r0ðxÞ ¼ 1, implying also C0 ¼ 1.

The next polynomial p1 is given by

p1 ¼ �1ðr1 � hr1; p0ip0Þ ð21Þ
with a suitable normalization constant �1. Introducing the

abbreviation

X ¼ hr1; p0i ¼ ð1=NÞPN
i¼1

xi ð22Þ

for the barycentre of X, we thus have

p1ðxÞ ¼ �1ðx� XÞ; �1 ¼ 1=kr1 � Xk: ð23Þ
Based on p0, the least-squares fit Pð0Þ is

Pð0ÞðxÞ ¼ hY; p0ip0ðxÞ ¼ ð1=NÞPN
i¼1

YðxiÞ; ð24Þ

which is simply the average of the given measurements.

According to Theorem 2, the average should be considered as

an approximation of the true function f at the favourable point

x ¼ X , which is the root of the polynomial p1.

Proceeding to the case q = 1, the favourable points for the

linear fit Pð1Þ are defined as roots of

p2 ¼ �2ðr2 � hr2; p1ip1 � hr2; p0ip0Þ: ð25Þ
Using the centred power moments

mk ¼ ð1=NÞPN
i¼1

ðxi � X Þk; ð26Þ

the polynomial p2 can be written as

p2 ¼ �2 ðx� X Þ2 �m3

m2

ðx� X Þ �m2

� �
ð27Þ

with roots

x 2 X þ m3

2m2

þ s
m2

3

4m2
2

þm2

	 
1=2 ���� s 2 f�1; 1g
( )

: ð28Þ
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In particular, if the point distribution is symmetric around the

barycentre, the odd moments vanish (m3 ¼ 0), resulting in the

symmetric favourable points X þ sðm2Þ1=2 with s 2 f�1;þ1g.
In this case, the formula for C1 is also particularly simple.

Noting that �1 ¼ 1=ðm2Þ1=2, we find p1ðxÞ2 ¼ 1, so that

C1 ¼ p0ðxÞ2 þ p1ðxÞ2 ¼ 2.

As specific example, let us consider the case of regularly

distributed nodes

xi ¼ ð1=NÞ i� 1=2ð Þ 2 ½0; 1�; i ¼ 1; . . . ;N: ð29Þ
In this case, X ¼ 1

2 ;m3 ¼ 0 and m2 ¼ ð1� 1=N2Þ=12, giving
rise to the favourable points

x 2 1=2þ ðs=6Þ 3� 3=N2
� �1=2 �� s 2 f�1; 1g

n o
: ð30Þ

For various values of N, the resulting left and right favourable

points are listed in Table 1. It should be noted that the loca-

tions change only slightly with N. This is important in cases

such as crystallographic data collection, where the point

distribution X varies from one experiment to another so that

the favourable points differ. Since the variation is not very

strong as long as the points are distributed sufficiently regu-

larly, it still makes sense to use a common evaluation point.

This aspect is analysed carefully in the next section.

We close this section by reporting the favourable points in

the case q = 2 for node distributions that are symmetric about

their barycentre. Computing the roots of

p3ðxÞ ¼ �3 ðx� X Þ3 �m4

m2

ðx� X Þ
� �

; ð31Þ

we find three favourable points for q = 2:

x 2 X � m4

m2

	 
1=2

; X; X þ m4

m2

	 
1=2
( )

: ð32Þ

3. Testing the favourable points

Theorem 2 estimates the averaged squared approximation

error

eq ¼ Eðjf ðxÞ � PðqÞðxÞj2Þ ð33Þ
when the fit polynomial PðqÞ of degree q is used at the

favourable point x to approximate the true value f ðxÞ from
noisy data YðxiÞ ¼ f ðxiÞ þ �"i.

In the practically relevant case of intensity measurements in

a macromolecular X-ray experiment, the values f ðxiÞ would be

intensities corresponding to certain reciprocal lattice points of

the Fourier transform of the unit cell, where xi is a rotation

angle of the crystal, or equivalently, a dose value of radiation.

The number n of dose values at which the intensity is available

is called its multiplicity.

As far as the xi are concerned, we are faced with the

complication that they are not fixed in advance but depend on

the experimental setup and vary from one reciprocal lattice

point to another. As a consequence, the favourable points are

also different for different reflections, which leads to a certain

quality reduction when we interpolate several intensities at a

common dose value. Instead of the situation studied in

Theorem 2, it would therefore be more realistic to allow for a

reasonable variability of xi while using some effective

favourable point xq.

Secondly, the dose-dependent intensity functions f in X-ray

experiments possess certain structural features which suggest

the consideration of a restricted range of possible target

functions f and the estimation of the average interpolation

error for this whole class.

In the following, we will therefore include a variation of the

nodes xi as well as the target functions f in the averaging

process (described in xx3.1 and 3.2). The resulting average

squared approximation error eq then characterizes the beha-

viour of the fitting procedure for a whole range of scenarios

which are reasonably related to those found in macro-

molecular X-ray experiments. Clearly, the advantage of using

synthetic values for f and xi over real ones is that the errors

can be computed exactly.

3.1. Effective favourable points

As already indicated in Table 1, the locations of the

favourable points vary only slightly with multiplicity for

regular node distributions. To check the behaviour in cases

that are irregular, we compare various dose value distributions

in the unit interval. Our goal is to find out whether a definition

of common favourable points is still feasible.

In the m-box random case, we split the unit interval into

dn=me equal-sized boxes and choose in each box m random

points, i.e.

xi ¼
1

dn=me di=me � uið Þ; i ¼ 1; . . . ; n; ð34Þ

with ui being independent and uniformly distributed in [0, 1].

This case (often with m = 4 when the detector is not swung

out) appears appropriate for an experiment in crystallography

in which the total rotation range is several times larger than

the asymmetric unit of reciprocal space given by the crystal

symmetry and alignment (Dauter, 1999).

In the random case, the points are chosen fully random, i.e.

xi ¼ ui; i ¼ 1; . . . ; n; ð35Þ
where again ui are independent and uniformly distributed in

[0, 1].

In order to assess the distribution of favourable points, we

conduct an experiment with M = 10 000 node sets and multi-

plicity n = 10. The favourable points are computed in the case
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Table 1
Left and right favourable points for a regular distribution of the nodes
x1; . . . ; xN .

In the limit N ! 1, we recover the two points of the continuous case
discussed in Theorem 1.

N 4 5 6 8 10 20 1
Left 0.221 0.217 0.215 0.214 0.213 0.212 0.211
Right 0.780 0.783 0.785 0.786 0.787 0.788 0.789
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of linear fitting and the results are collected in histograms,

shown in Fig. 3.

Mean values for the favourable points are summarized in

Table 2. The general observation is that the variation of the

favourable points is strongly related to the regularity of the

points xi. In addition, the variation reduces if the multiplicity is

increased. Finally, the average over the favourable points is

only weakly dependent on the structure of the experiment and

is quite close to the corresponding values listed in Table 1 for

the case of regular node distribution.

In the following, we will work with the 4-box random node

distribution because it reflects to some extent the structure of

real macromolecular X-ray data. As an effective favourable

point we take x1 ¼ 0:21.
With a similar approach, we find in the case of a constant

least-squares fit (q = 0) that x0 ¼ 0:5 is very close to the

average favourable points for all types of experiments. In the

case of quadratic fits, x2 ¼ 0:12 is a reasonable compromise,

although for fittings of higher degree, the dependence of the

favourable points on the multiplicity is generally stronger.

3.2. Model for intensity functions

Next, we briefly describe the structure of a generic synthetic

data set Y used in our numerical tests (further details can be

found in Appendix B). In accordance with the model

described in the previous section, we assume

YðxiÞ ¼ f ðxiÞ þ �"i; ð36Þ
where f models the true dose-dependent intensity and "i are
independent standard normal-distributed random numbers

which simulate measurement errors. The variance parameter �
is chosen in such a way that a certain signal-to-noise ratio r is

obtained. More specifically, we set

� ¼ s=r; s ¼ ð1=nÞPn
i¼1

f ðxiÞ ð37Þ

so that r = s/� is the ratio of average intensity to noise level �.
To obtain a suitable structure for the intensity values, we

assume that the dose-dependent contribution F(x) of the

Fourier transform has the form

FðxÞ ¼ A expði’Þ þ BðxÞ expði Þ; ð38Þ
where A expði’Þ is the transform of the undisturbed electron

density at the reciprocal lattice point under consideration,

while BðxÞ expði Þ represents the dose-dependent transform

of the damaged density. Our structural assumptions on B are

B(0) = 0 and monotonicity, reflecting the growing influence of

radiation damage. Restricting to the case A > 0, the scaled

intensity f ðxÞ ¼ jFðxÞj2=A2 has the form

f ðxÞ ¼ jaþ bðxÞj2; ð39Þ
with a ¼ exp½ið’�  Þ� and b = B/A also being monotonic.

Since b is unknown and definitely dependent on many inde-

pendent factors, we randomly choose it from a reasonably

large set of functions which share the monotonicity property

and the zero initial value. Similarly, a is chosen randomly on

the unit circle in the complex plane. For further details on the

construction of f, we refer to Appendix B.

3.3. Relevance of effective favourable points

In the following, we investigate the usefulness of effective

favourable points for the evaluation of the least-squares

approximations. To this end, we compute the averaged

squared approximation error

E½jf ðxÞ � PðqÞðxÞj2� ð40Þ
between the true value f(x) and the degree-q polynomial fit

PðqÞðxÞ of the noisy data at 100 equidistant points x 2 ½0; 1�.
The average is based on M = 10 000 sets of 4-box random

distributed nodes in connection with M random functions

constructed as described above.

In Fig. 4, results are shown for various multiplicities and

signal-to-noise ratios in the case of linear fits. Obviously, the

effective favourable point x1 ¼ 0:21 offers no advantage in the
case of low multiplicities and small signal-to-noise ratios.

Conversely, for high average multiplicities and low measure-

ment errors, the point is almost optimum.

In order to assess the influence of the degree of the fitting

polynomial, we repeat the simulation for constant (q = 0) and

quadratic (q = 2) fitting.

In the case of low multiplicity and high noise level, the

linear fit has larger average approximation errors than the

constant fit at all points (see Fig. 5). Thus, it is not advisable to

use linear fits in this situation. The error of the quadratic fit is

so large that the curve is not visible on the chosen scale. We

note in passing that the error of the constant fit is minimum

close to the effective favourable point x0 ¼ 0:5. We can also

see that the constant approximation is poor if used as an

approximation for the zero-dose value, because the average

approximation error is comparably large at x = 0.

At a medium multiplicity n = 10, but still at a low signal-to-

noise ratio r = 8, the linear approximation is better than either
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Figure 3
Distributions of favourable points for M = 10 000 node sets with
multiplicity n = 10. The node distributions are (a) 2-box random, (b)
4-box-random and (c) random.

Table 2
Mean values of favourable points.

n 1-Box random 2-Box random 4-Box random Random

4 0.214 0.787 0.224 0.773 0.254 0.747 0.254 0.748
8 0.211 0.789 0.212 0.788 0.217 0.782 0.226 0.773
16 0.211 0.789 0.211 0.789 0.212 0.788 0.219 0.782
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the constant or the quadratic fit over the complete interval.

Although at the favourable point x1 ¼ 0:21, the approxima-

tion error of the linear fit shows no local minimum and the

accuracy is quite close to that of the constant fit at x0 ¼ 0:5.
Thus, the linear fit may be used instead of the constant

approximation if an interpolation point closer to the origin is

desirable. A glance at the error of the quadratic fit shows that

it is now better than the constant approximation at the

boundaries of the interval but less accurate at the centre.

This situation changes for high multiplicities and better

signal-to-noise ratios, as indicated in Fig. 5(c). Now the

quadratic fit generally has the lowest average approximation

error, although a local minimum at the effective favourable

point x2 ¼ 0:12 has not yet developed. In contrast, the

approximation error of the linear fit possesses a clear local

minimum at x1 ¼ 0:21 and the error value at this point is

smaller than the minimum error of the constant approxima-

tion. Even if the error values were almost equal, it would still

pay off to use the linear fit, because it delivers a good

approximation at a smaller dose value. We note that, also in

this case of accurate measurements, the zero-dose extrapola-

tion based on the evaluation of the polynomial approximation

at x = 0 is accompanied by a relatively large approximation

error.

3.4. Systematic assessment of errors at effective favourable

points

In order to summarize the observations of the previous

section, we compute the errors at favourable points xq for a

range of characteristics

n 2 f4; 5; 6; . . . ; 20g; r 2 ½1; 21�: ð41Þ

By eq we denote the averaged squared approximation error of

the polynomial approximation of degree q at the corre-

sponding effective favourable point derived in x3.1. The ratios
e0=e1 and e0=e2 are shown in Fig. 6. As expected, it is prefer-

able to use the constant approximation in the case of low

multiplicity and poor signal-to-noise ratio. However, if the

signal-to-noise ratio exceeds ten and the multiplicity is at least
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Figure 5
Averaged squared approximation errors of constant (solid), linear
(dashed) and quadratic (dotted) fits. The multiplicities n and signal-to-
noise ratios r are (a) n = 4, r = 2, (b) n = 10, r = 8, and (c) n = 16, r = 14.

Figure 6
(a) Level lines of the ratio e0=e1. Above the solid line, the error of the
constant fit at x0 is larger than that of the linear approximation at
x1 ¼ 0:21. (b) Level lines of the ratio e0=e2 with e2 computed at the
favourable point x2 ¼ 0:12.

Figure 4
Averaged squared approximation error [equation (40)] of linear fits (q =
1) for x 2 ½0; 1�.The multiplicities n and signal-to-noise ratios r are (a) n =
4, r = 2, (b) n = 10, r = 8, and (c) n = 16, r = 14.
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eight, the error e1 of the linear approximation is generally

better than e0 and it is obtained at a lower dose value. For

multiplicities less than eight, increasingly large signal-to-noise

ratios are necessary to obtain a linear fit that outperforms the

constant one.

Comparing the error e2 of the quadratic approximation with

e0, we observe a similar behaviour, with the difference that the

break-even line is reached only at higher multiplicities and

larger signal-to-noise ratios. However, a direct comparison

between e1 and e2 shows that, for the synthetic experiment

considered here, the quadratic fitting never leads to consid-

erably smaller errors than the linear one.

4. Results and discussion

The results presented above support a number of direct

conclusions and offer explanations for previous findings. Most

importantly from a practical viewpoint, this paper states the

conditions under which linear extrapolation can be expected

to yield better reduced data than the (usually employed)

estimate using a constant, where the latter disregards the dose

information attached to each observation of a unique reflec-

tion. It is found that, if either a sufficiently large multiplicity or

a high enough signal-to-noise ratio is present, the linear fit is

superior to the constant fit when calculated at the favourable

value of interpolation. It is shown that this favourable point

corresponds to 21% of the full dose, similar to the value

suggested by Diederichs (2006) without proper theoretical

justification.

A most welcome aspect of this finding is that the biological

interpretation of electron densities and atomic positions may

be performed based on estimates of intensities obtained at a

lower level of radiation damage than the fit of a constant to the

data (which always results in intensities corresponding to an

average level of radiation damage). Thus, the models of

biological structures obtained by linear interpolation are less

altered by radiation damage, and certain types of misinter-

pretation (like giving significance to radiation-induced

changes of side-chain conformations) may be less likely.

Within a given macromolecular data set, the signal-to-noise

ratio is usually highest at low resolution, and low at high

resolution. Thus, the low-resolution structure factors benefit

most from the linear interpolation, as noted by Diederichs et

al. (2003), whereas the effect at high resolution (with low

signal-to-noise ratio) may be an increase in averaged

approximation error. The method thus seems to be best

applicable to substructure detection, which requires a high

signal-to-noise ratio, but is less suitable for producing data for

high-resolution refinement, unless specific procedures are

implemented to guard against an increase in noise in the

interpolated data or the multiplicity is unusually high (Weiss et

al., 2004).

Our results also show that extrapolation to zero dose, using

the fitting function directly, leads to an increase in errors. This

is most relevant to MAD and SAD phasing and explains the

finding of Ravelli et al. (2005), who observed increased noise

in anomalous difference Pattersons obtained from zero-dose

extrapolation. Furthermore, it rationalizes the finding that

zero-dose extrapolation does not appear to be as helpful in

MAD phasing as initially expected by Diederichs et al. (2003).

Rather than interpolating towards the middle of the total dose

range, as suggested by Diederichs et al. (2003), our results

indicate that a better strategy would be to interpolate the

intensities of each of the MAD data sets (or rather, each

wavelength) at its favourable dose value (at either 21 or 79%

of the dose range covered by this wavelength).

A final comment concerns snapshots of structure factors

corresponding to different states of radiation damage. It may

be suggested to interpolate between about 15 and 85% of the

dose interval of the measurement; values near 0 and 100%

have significantly more error (see Figs. 4 and 5).

Future work should investigate whether an even better

model for radiation damage and its correction could be

obtained by generating more realistic data from synthetic

molecular models with simulated (known) radiation damage.

APPENDIX A
Proofs of the theorems

A1. Proof of Theorem 1

Defining the L
2ð½0; 1�Þ-orthonormal polynomials

p0ðxÞ ¼ 1; p1ðxÞ ¼ ð12Þ1=2 x� 1=2ð Þ; ð42Þ
the linear least-squares fit of a function f is given by

Pf ¼ h f ; p0ip0 þ h f ; p1ip1: ð43Þ
Further, let Q be any quadratic polynomial and define the

distance to f as

d ¼ max
x2½0;1�

jf ðxÞ �QðxÞj: ð44Þ

Using the fact that the linear least-squares fit PQ coincides

with Q at the favourable points x, we have

jPf ðxÞ � f ðxÞj � jPf ðxÞ � PQðxÞj þ jQðxÞ � f ðxÞj: ð45Þ
To estimate the first term, we use the representation of the

linear fit

jPf ðxÞ � PQðxÞj � jh f �Q; p0ij jp0ðxÞj þ jh f �Q; p1ij jp1ðxÞj:
ð46Þ

Since jp0ðxÞj ¼ jp1ðxÞj ¼ 1, we conclude

jPf ðxÞ � PQðxÞj � dþ d
R1
0

jp1ðxÞj dx ¼ dþ ð31=2=2Þd � 2d:

ð47Þ
Inserted into equation (45), we obtain the required estimate

jPf ðxÞ � f ðxÞj � 3d.

A2. Proof of Theorem 2

The proof is similar to that of Theorem 1. We first observe

that, for some arbitrary polynomial Q 2 �qþ1, the best

approximation P
ðqþ1Þ
Q in �qþ1 is Q itself. With the definition of

the favourable points x as roots of pqþ1, we have
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P
ðqÞ
Q ðxÞ ¼ P

ðqÞ
Q ðxÞ þ hQ; pqþ1ipqþ1ðxÞ ¼ P

ðqþ1Þ
Q ðxÞ ¼ QðxÞ;

ð48Þ
which means that the best fit of Q in �q equals Q at the

favourable points. Using this property, we can split the

difference

P
ðqÞ
Y ðxÞ � f ðxÞ ¼ P

ðqÞ
Y ðxÞ � P

ðqÞ
Q ðxÞ þQðxÞ � f ðxÞ: ð49Þ

Further, in view of the linearity of the least-squares procedure,

we have

P
ðqÞ
Y ðxÞ � P

ðqÞ
Q ðxÞ ¼ P

ðqÞ
f�QðxÞ þ PðqÞ

" ðxÞ; ð50Þ
where " ¼ Y � f 2 L

2ðXÞ is the function "ðxiÞ :¼ "i which

assigns to each xi the corresponding measurement error.

Altogether, we have

P
ðqÞ
Y ðxÞ � f ðxÞ ¼ PðqÞ

" ðxÞ þ RðxÞ; R ¼ P
ðqÞ
f�Q þQ� f : ð51Þ

For the squared error, we conclude

jPðqÞ
Y ðxÞ � f ðxÞj2 ¼ PðqÞ

" ðxÞ2 þ RðxÞ2 þ 2PðqÞ
" ðxÞRðxÞ: ð52Þ

Since " has a mean of zero at every xi, the linearity of both the

expected value and the least-squares projection yields

E½PðqÞ
" ðxÞRðxÞ� ¼ P

ðqÞ
Eð"ÞðxÞRðxÞ ¼ 0: ð53Þ

We therefore have

E½jPðqÞ
Y ðxÞ � f ðxÞj2� ¼ E½PðqÞ

" ðxÞ2� þ RðxÞ2: ð54Þ
Expanding the least-squares approximation of ", we find

PðqÞ
" ðxÞ2 ¼ P

k;l

h"; pkih"; plipkðxÞplðxÞ: ð55Þ

For the expected value of the product of the scalar products,

we obtain

Eðh"; pkih"; pliÞ ¼ ð1=N2ÞP
i;j

Eð"i"jÞpkðxiÞplðxjÞ ð56Þ

and, in view of the independence and the common variance,

Eðh"; pkih"; pliÞ ¼ ð�2=N2ÞP
i

pkðxiÞplðxiÞ ¼ ð�2=NÞhpk; pli:
ð57Þ

Inserting this relation into the previous sum and using

hpk; pli ¼ �kl, we finally obtain

E½PðqÞ
" ðxÞ2� ¼ ð�2=NÞP

k

pkðxÞ2: ð58Þ

It remains to estimate the deterministic term R2 in terms of the

distance

d ¼ max
x2½0;1�

jf ðxÞ �QðxÞj: ð59Þ

First, we rewrite the squared sum as a sum of squares

RðxÞ2 � 2 P
ðqÞ
f�QðxÞ2 þ QðxÞ � f ðxÞ½ �2

n o
� 2 P

ðqÞ
f�QðxÞ2 þ d2

h i
:

ð60Þ
Noting that

P
ðqÞ
f�QðxÞ2 ¼

Pq
k¼0

h f �Q; pkipkðxÞ
� �2

� ðqþ 1ÞPq
k¼0

h f �Q; pki2pkðxÞ2 ð61Þ

and applying the Schwarz inequality

h f �Q; pki2 � kf �Qk2kpkk2 � d2; ð62Þ
we obtain the estimate

RðxÞ2 � 2 ðqþ 1Þd2 Pq
k¼0

pkðxÞ2 þ d2
� �

� 2ðqþ 2ÞPq
k¼0

pkðxÞ2d2;
ð63Þ

where we have used p0 ¼ 1 so that 1 � Pq
k¼0 pkðxÞ2.

Combining the two estimates in equation (54), the result of the

theorem follows.

APPENDIX B
Construction of the intensity functions

In this section, we give additional information on the

construction of the dose-dependent intensity function

f ðxÞ ¼ jaþ bðxÞj2; x 2 ½0; 1�: ð64Þ
From the form of f it is clear that we can restrict our consid-

erations to monotonically growing functions b because the

decreasing case differs from the increasing one only by a sign

change of a, where a is in any case chosen to be uniformly

distributed on the unit circle in C.

To ensure that b(x) is a reasonably general monotonic

function, we write

bðxÞ ¼ �½xþ �QðxÞ�; ð65Þ
where � is any real number, � 2 ð0; 1Þ and Q is a polynomial

which satisfiesQ(0) = 0 and jQ0ðxÞj � 1 (we took � = 0.8 in our

test case). This guarantees that b(0) = 0 and that the slope of

x + �Q(x) is always positive, implying monotonicity of b.

The derivative R(x) = Q0(x) is constructed as a convex

combination,

RðxÞ ¼ �0T0ð�xÞ þ �1T1ð�xÞ þ � � � þ �kTkð�xÞ; ð66Þ
of the Chebychev polynomials Ti which are known to obey

jTiðxÞj � 1 (we took k = 5 in our experiment). In order to

obtain a wide variety of such polynomials, we choose the

coefficients ð�0; . . . ; �kÞ uniformly from the standard (k + 1)

simplex according to Devroy (1984).

While the parameter a in equation (64) is chosen to be

uniformly distributed on the unit circle, the value of � is

chosen such that the total intensity variation amounts to a

fraction � of the initial intensity a2. The factor � is a random

variable with average � ¼ 0:4 which is uniformly distributed in

the two intervals [��; �] and [�; �þ] to the left and the right of

the average, where �� ¼ 0:2 and �þ ¼ 1:1.
Altogether, the algorithm for the construction of f is as

follows. First, the complex number a is chosen randomly with

jaj ¼ 1 and R is constructed using a random sample from the

(k + 1) simplex, followed by integration to obtainQ. Then, the
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sign of � > 0 is selected based on the random fraction �,
specifying the allowed total variation of the intensity f on

[0, 1].

Some typical examples of the resulting functions f are

shown in Fig. 7.

We conclude with a description of the overall characteristics

of our synthetic data. Choosing 4-boxed random points,

multiplicity n = 12 and signal-to-noise ratio r = 8, we construct

M = 100 000 intensity functions Y1; . . . ;YM which are set up

with the parameters given above. Computing the difference

between the average intensity of the first Ykðxk1Þ and last

Ykðxknk Þ measurements, we find

ð1=MÞPM
k¼1

Ykðxk1Þ � ð1=MÞPM
k¼1

Ykðxknk Þ
����

���� ’ j1:027� 1:026j:
ð67Þ

Relative to the average initial intensity, this amounts to only

0.1%, which is a consequence of the symmetry in our

construction of the intensity functions where an increase in the

intensity is as probable as a decrease. This corresponds to the

fact that, during processing of experimental data, the overall

trend of weakening diffraction is removed by the scaling

procedure.

A second characterizing quantity is the average absolute

intensity change relative to the absolute initial intensityPM
k¼1 jYkðxk1Þ � Ykðxknk ÞjPM

k¼1 Ykðxk1Þ
’ 20%; ð68Þ

which describes the typical variation in each of the 100 000

intensity functions. Again, this value appears realistic for an

experiment with moderate radiation damage.
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Figure 7
Some typical normalized synthetic intensity functions with an intensity
variation of around 40%. (a) Monotonic growth corresponds to phase
factors a with a positive real part. (b) A monotonic decrease typically
appears for a negative real part of a and a small imaginary part. (c) A
minimum generally occurs in the case when a has a negative real part and
an imaginary part close to 1.
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